DNA structural similarity in the 2:1 complexes of the antitumor drugs trabectedin (Yondelis) and chromomycin A3 with an oligonucleotide sequence containing two adjacent TGG binding sites on opposing strands.
نویسندگان
چکیده
Yondelis (trabectedin) is an antitumor ecteinascidin that binds covalently to the 2-amino group of the central guanine in the minor groove of selected DNA pyrimidine-G-G and purine-G-C triplets. Chromomycin A3 is an aureolic acid derivative that binds noncovalently to the DNA minor groove in G/C-rich triplet sites as a metal-chelated dimer. Despite their different binding modes, the cytotoxicity profiles of these two drugs, as assessed in the COMPARE analysis carried out by the National Cancer Institute on data from 60 human tumor cell lines, are highly correlated (Pearson's correlation coefficient of 0.96). We now report that in an oligonucleotide containing the "natural bending element" TGGCCA, the structural distortions inflicted by the tail-to-tail bonding of two trabectedin molecules to adjacent target sites on opposing strands are strikingly similar to those observed in a crystal containing d(TTGGCCAA)2 and two bound chromomycin A3 molecules arranged in a head-to-tail orientation in the minor groove. In both complexes, the double helix is characterized by being considerably unwound and possessing a notably widened minor groove. Binding of the drugs to this sequence could be favored by the distinct bends at each of the TpG steps that are already present in the free oligonucleotide. Simultaneous drug binding to the two strands in the manner described here is proposed to stabilize the helical structure of duplex DNA to prevent or hamper strand separation and stall replication and transcription forks.
منابع مشابه
Interactions of chromomycin A3 and mithramycin with the sequence d(TAGCTAGCTA)2.
Anti-cancer antibiotics, chromomycin A3 (CHR) and mithramycin (MTR) inhibit DNA directed RNA synthesis in vivo by binding reversibly to template DNA in the minor groove with GC base specificity, in the presence of divalent cations like Mg2+. Under physiological conditions, (drug)2Mg2+ complexes formed by the antibiotics are the potential DNA binding ligands. Structures of CHR and MTR differ in ...
متن کاملEvaluation of complexation of metal-mediated DNA-binding drugs to oligonucleotides via electrospray ionization mass spectrometry.
The interactions of self-complementary oligonucleotides with a group of metal-mediated DNA-binding drugs, including chromomycin A(3), mithramycin and the novel compound UK-1, were examined via electrospray ionization quadrupole ion trap mass spectrometry. Both chromomycin and mithramycin were shown to bind preferentially to GC-rich oligonucleotide duplexes in a 2:1 drug:metal ratio, while UK-1 ...
متن کاملTargeting DNA-binding drugs to sequence-specific transcription factor.DNA complexes. Differential effects of intercalating and minor groove binding drugs.
Intercalating, minor groove binding, and covalently bonding drugs were evaluated by mobility shift assays for their ability to interfere with transcription factors binding to their respective DNA recognition sequences. The Cys2His2 zinc finger proteins EGR1, WT1, and NIL2A, the basic leucine-zipper protein wbJun/wbFos, and the minor groove binding protein hTBP were chosen as representative tran...
متن کاملTargeting of the HIV-1 long terminal repeat with chromomycin potentiates the inhibitory effects of a triplex-forming oligonucleotide on Sp1-DNA interactions and in vitro transcription.
We have studied the effects of chromomycin and of a triple-helix-forming oligonucleotide (TFO) that recognizes Sp1 binding sites on protein-DNA interactions and HIV-1 transcription. Molecular interactions between chromomycin, the Sp1 TFO and target DNA sequences were studied by gel retardation, triplex affinity capture using streptavidin-coated magnetic beads and biosensor technology. We also d...
متن کاملBINDING OF THE ANTITUMOR DRUG ADRIAMYCIN TO DNA-HISTONE COMPLEXES
Isotherms of the binding of the anthracycIine antibiotic, adriamycin (adriblastin), to DNA histone complexes was studied by means of spectroscopic analysis. The results indicated that: (a) binding of adriamycin to histones reduced the interaction of histones with DNA, (b) binding of the drug to DNA did not change the binding affinity of histone to DNA and, (c) in the explored binding range...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 68 6 شماره
صفحات -
تاریخ انتشار 2005